Viral Enfeksiyonda K2 Kullanımı Neden Önerilmektedir?
K vitamini, kan pıhtılaşmasına yardımcı olmasının ötesinde potansiyel bir terapötik ajan (tedavi edici) olarak önem kazanmıştır. K vitamininin iki biyoaktif formu bilinmektedir; K1 vitamini (Phytonadione/phylloquinone) ve K2 vitamini (menaquinones).
Yapılan araştırmalar neticesinde K2 (menaquinones) vitamininin K1'den daha üstün bir besin takviyesi olduğu bulgusuna ulaşılmıştır. K1 esas olarak yapraklı sebzelerden elde edilirken, K2 fermente ürünlerden ve bağırsak mikrobiyotasından elde edilmektedir. Bununla birlikte, viral enfeksiyonlarda kullanılan antibiyotiklerin bağırsak florasını bozduğu da bilinmektedir. Bu, vücut için gerekli K2 vitamini sentez yeteneğini de azaltan önemli bir sorundur.
K vitamini, yağda eriyen diğer vitaminler gibi vücutta birikmediğinden bedenin ihtiyaç duyduğu kadarının günlük olarak temini elzemdir. Kemik metabolizmasında çeşitli görevleri bulunan protein üretimi için de gerekli olduğundan mutlaka günlük olarak sağlanmalıdır.
K2 vitamini vücuttaki kalsiyum metabolizmasını düzenlerken aynı zamanda diyabet metabolizmasında da aktif görev alan bir vitamindir. K2 vitamini yetersizliği; osteoporoz, kemik kırıkları ve kardiyovasküler hastalık riskini arttırır.
Yukarıda yazılanlardan da anlaşılacağı üzere çok önemli bir vitamin olan K2, ne yazık ki henüz sağlık uzmanlarınca ve otoritelerce hak ettiği ilgiyi görmemektedir.
Bu yazıda çok kısa olarak;
1-Antibiyotik yazılan her reçetede neden K2 vitamini de olması gerektiği,
2-D vitamini ve C vitamini alırken, onlarla birlikte neden K2 vitamininin de alınması gerektiği,
3-Effervesan ürün tercihinin asıl nedeni, gibi sorulara cevap bulabileceğinizi düşünüyorum.
Yakın zamanda yaşadığımız ve pek çok yakınımızı kaybetmemize neden olan pandemide en önemli desteğimiz D vitamini olmuştu. D vitamini desteği ile ilgili olumlu görüşler her geçen gün artmaktadır (Grant et al.2020). Vitamin D düzeyinin 41 ng/ml üzerinde olmasının mortaliteye karşı önemli ölçüde koruyuculuk sağladığı 611 vakalık bir çalışma ile saptanmıştır (Maghbooli et al., 2020). Yüksekliğinin koruyucu olduğunu gösteren deliller bir yana, düşüklüğünün ciddi tehlike yarattığını bildiren yayınlar da vardır (Karonova et al., 2020). Avrupa Gıda Güvenliği Otoritesinin (EFSA, 2016) minimum 25(OH)D serum seviyesine ulaşılması için günlük 25 ng/dl tavsiye etmesi, vücut için gerekli dozajın doğruluğu hakkında şüphe uyandırmaktadır.
Toplumun düşük seviyelerde olan kan düzeyleri gerçeği karşısında belirli vitaminlerin yüksek dozlardaki kullanım önerileri, hastalıklara karşı savunmasız kalmamızın veya onlara aciz durumda yakalanmamızın kaçınılmaz olduğunu göstermektedir. Bu durum, yeterli vitamin düzeyi sağlamanın, halk sağlığı açısından hastalıklara karşı çok önemli koruyucu hizmet anlamına geleceği konusunu açıklamaktadır.
Ancak yüksek düzeylerde kullanılan tek taraflı vitamin destekleri de bazı zararlı etkiler oluşturabilir. Aşağıdaki karmaşık ağda belirtildiği gibi D vitamini pek çok diğer vitamin ve hormonal düzeyle doğrudan bağlantılıdır (şekil 1). Aşırı D vitamini alımı hipervitaminoz D olarak bilinen duruma sebep olabilir.

Bu D vitamini toksikasyonu kalsiyum artışı yaparak damar vasküler yapısında çökmelere vasküler kalsinozise (damar sertliğine), böbreklerde birikerek nefrokalsinozise (böbrek taşına) neden olur. Fakat çalışmalar bu hiperkalseminin asıl nedeninin K2 vitamin eksikliği olduğunu da göstermiştir (Flore et al., 2013; Vermeer and Theuwissen, 2011).
K2 vitamini kemik yapımından sorumlu olan osteokalsin proteinini (kalsiyumu kemik dokusuna yerleştiren protein yapıdaki hormon) aktive eder. Eğer D vitamini yüksek alınır ve K2 desteği alınmazsa osteokalsin aktive olmayacağı için kalsiyum kemiklerde biriktirilemez ve kan kalsiyumu yükselir. Bu da çeşitli dokularda çökerek sağlığa zarar verir.
Sözün özü, D vitamini etkilerinin antogonisti olarak K2, vücut homeostazı için de önemlidir. Bu nedenle D vitamini ve K2 vitamininin birlikte kullanımı önerilir. Viral salgınlarda kullanılan yüksek dozajlı D vitamini ve C vitamini tedavilerinde K2 verilmesi sağlık açısından çok önemlidir.
Effervesan konusuna gelecek olursak; genelde sıvı alımı arttırılmak istendiğinden effervesan gıda takviyelerinde D vitamini ve C vitamini birlikte sunulmuştur. Fakat son açıklanan veriler ışığında bu tarz ürünlerde K2 desteğinin preperatta olup olmadığına dikkat etmek ve mümkünse Vit D ,Vit C ve Vit K2 içeren kombine ürünlerin tercih edilmesi en doğru seçenek olacaktır (Yasui et al., 2006; Dofferhoff et al., 2020).
Özellikle yaşlı hastalarda, kalp damar sağlığı problemi olanlarda veya tanı almamış risk grubundaki kişilerde D vitamini ve C vitamini preperatı verirken yanında mutlaka K2 olmalıdır. Avrupa’da artık, insülin direnci olanlara veya Tip 2 diyabet tanı hastalara hastalıklardan korunma sağlanması ve tedavi desteği amacıyla C vitamini verilirken K2 ve D vitamini içeren kombinasyon yaygın olarak tercih edilmektedir.
Diğer Referans Kaynaklar:
1. Dam H. Cholesterinstoffwechsel in Huhnereien und Huhnchen.
Biochem Zeitschr 1929;215:475–92.
2. Tsugawa N, Shiraki M. Vitamin K nutrition and bone health. Nutrients
2020;12(7):1909.
3. Oxholm Gordeladze J. Vitamin K2: a vitamin that works like a hormone, impinging on gene expression. In: Ray S (ed.). Cell
Signalling—Thermodynamics and Molecular Control [Internet], IntechOpen, 2019. Available via https://www.intechopen.com/books/
cell-signalling-thermodynamics-and-molecular-control/vitamin-k2-a-vitamin-that-works-like-a-hormone-impinging-on-gene-expression (Accessed 15 May 2021).
4. Xv F, Chen J, Duan L, Li S. Research progress on the anticancer effects of vitamin K2 (Review). Oncol Lett [Internet] 2018. Available via http://www.spandidos-publications.com/10.3892/ol.2018.8502 (Accessed 15
May 2021).
5. Schwalfenberg GK. Vitamins K1 and K2: the emerging group of vitamins required for human health. J Nutr Metab 2017;2017:1–6.
6. Berenjian A, Mahanama R, Kavanagh J, Dehghani F. Vitamin K series: current status and future prospects. Crit Rev Biotechnol 2015;35(2):199–208.
7. Kojima A, Ikehara S, Kamiya K, Kajita E, Sato Y, Kouda K, et al. Natto intake is inversely associated with osteoporotic fracture risk in postmenopausal Japanese Women. J Nutr 2020;150(3):599–605.
8. DiNicolantonio JJ, Bhutani J, O’Keefe JH. The health benefits of vitamin K. Open Heart 2015;2(1):e000300.
9. w Walther B, Chollet M. Menaquinones, bacteria, and foods: vitamin K2 in the diet. In: Gordeladze JO (ed.). Vitamin K2—Vital for Health and Wellbeing [Internet], InTech, 2017. Available via http://www.
intechopen.com/books/vitamin-k2-vital-for-health-and-wellbeing/menaquinones-bacteria-and-foods-vitamin-k2-in-the-diet (Accessed 15 May 2021).
10. Shearer MJ, Newman P. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis. J Lipid Res 2014;55(3):345–62.
11. Halder M, Petsophonsakul P, Akbulut A, Pavlic A, Bohan F, Anderson E, et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. IJMS 2019;20(4):896.
12. Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, et al. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice. J Biol Chem 2008;283(17):11270–9.
13. Hirota Y, Tsugawa N, Nakagawa K, Suhara Y, Tanaka K, Uchino Y, et al. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating
precursor of tissue menaquinone-4 (vitamin K2) in rats. J Biol Chem 2013;288(46):33071–80
1. Dam H. Cholesterinstoffwechsel in Huhnereien und Huhnchen. Biochem Zeitschr 1929;215:475–92.
2. Tsugawa N, Shiraki M. Vitamin K nutrition and bone health. Nutrients 2020;12(7):1909.
3. Oxholm Gordeladze J. Vitamin K2: a vitamin that works like a hormone, impinging on gene expression. In: Ray S (ed.). Cell
Signalling—Thermodynamics and Molecular Control [Internet], IntechOpen, 2019. Available via https://www.intechopen.com/books/
cell-signalling-thermodynamics-and-molecular-control/vitamin-k2-a-vitamin-that-works-like-a-hormone-impinging-on-gene-expression (Accessed 15 May 2021).
4. Xv F, Chen J, Duan L, Li S. Research progress on the anticancer effects of vitamin K2 (Review). Oncol Lett [Internet] 2018. Available via http://
www.spandidos-publications.com/10.3892/ol.2018.8502 (Accessed 15 May 2021).
5. Schwalfenberg GK. Vitamins K1 and K2: the emerging group of vitamins required for human health. J Nutr Metab 2017;2017:1–6.
6. Berenjian A, Mahanama R, Kavanagh J, Dehghani F. Vitamin K series: current status and future prospects. Crit Rev Biotechnol 2015;35(2):199–208.
7. Kojima A, Ikehara S, Kamiya K, Kajita E, Sato Y, Kouda K, et al. Natto intake is inversely associated with osteoporotic fracture risk in postmenopausal Japanese Women. J Nutr 2020;150(3):599–605.
8. DiNicolantonio JJ, Bhutani J, O’Keefe JH. The health benefits of vitamin K. Open Heart 2015;2(1):e000300.
9. w Walther B, Chollet M. Menaquinones, bacteria, and foods: vitamin K2 in the diet. In: Gordeladze JO (ed.). Vitamin K2—Vital for Health and Wellbeing [Internet], InTech, 2017. Available via http://www.intechopen.com/books/vitamin-k2-vital-for-health-and-wellbeing/menaquinones-bacteria-and-foods-vitamin-k2-in-the-diet (Accessed 15 May 2021).
10. Shearer MJ, Newman P. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis. J Lipid Res 2014;55(3):345–62.
11. Halder M, Petsophonsakul P, Akbulut A, Pavlic A, Bohan F, Anderson E, et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. IJMS 2019;20(4):896.
12. Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, et al. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice. J Biol Chem 2008;283(17):11270–9.
13. Hirota Y, Tsugawa N, Nakagawa K, Suhara Y, Tanaka K, Uchino Y, et al. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J Biol Chem 2013;288(46):33071–80
1. Dam H. Cholesterinstoffwechsel in Huhnereien und Huhnchen.
Biochem Zeitschr 1929;215:475–92.
2. Tsugawa N, Shiraki M. Vitamin K nutrition and bone health. Nutrients 2020;12(7):1909.
3. Oxholm Gordeladze J. Vitamin K2: a vitamin that works like a hormone, impinging on gene expression. In: Ray S (ed.). Cell Signalling—Thermodynamics and Molecular Control [Internet], IntechOpen, 2019. Available via https://www.intechopen.com/books/cell-signalling-thermodynamics-and-molecular-control/vitamin-k2-a-vitamin-that-works-like-a-hormone-impinging-on-gene-expression (Accessed 15 May 2021).
4. Xv F, Chen J, Duan L, Li S. Research progress on the anticancer effects of vitamin K2 (Review). Oncol Lett [Internet] 2018. Available via http://www.spandidos-publications.com/10.3892/ol.2018.8502 (Accessed 15 May 2021).
5. Schwalfenberg GK. Vitamins K1 and K2: the emerging group of vitamins required for human health. J Nutr Metab 2017;2017:1–6.
6. Berenjian A, Mahanama R, Kavanagh J, Dehghani F. Vitamin K series: current status and future prospects. Crit Rev Biotechnol 2015;35(2):199–208.
7. Kojima A, Ikehara S, Kamiya K, Kajita E, Sato Y, Kouda K, et al. Natto intake is inversely associated with osteoporotic fracture risk in postmenopausal Japanese Women. J Nutr 2020;150(3):599–605.
8. DiNicolantonio JJ, Bhutani J, O’Keefe JH. The health benefits of vitamin K. Open Heart 2015;2(1):e000300.
9. w Walther B, Chollet M. Menaquinones, bacteria, and foods: vitamin K2 in the diet. In: Gordeladze JO (ed.). Vitamin K2—Vital for Health and Wellbeing [Internet], InTech, 2017. Available via http://www.intechopen.com/books/vitamin-k2-vital-for-health-and-wellbeing/menaquinones-bacteria-and-foods-vitamin-k2-in-the-diet (Accessed 15 May 2021).
10. Shearer MJ, Newman P. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis. J Lipid Res 2014;55(3):345–62.
11. Halder M, Petsophonsakul P, Akbulut A, Pavlic A, Bohan F, Anderson E, et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. IJMS 2019;20(4):896.
12. Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, et al. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice. J Biol Chem 2008;283(17):11270–9.
13. Hirota Y, Tsugawa N, Nakagawa K, Suhara Y, Tanaka K, Uchino Y, et al. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J Biol Chem 2013;288(46):33071–80.
14. Simes DC, Viegas CSB, Araújo N, Marreiros C. Vitamin K as a diet supplement with impact in human health: current evidence in age-related diseases. Nutrients 2020;12(1):138.
15. Ayombil F, Camire RM. Insights into vitamin K-dependent carboxylation: home field advantage. Haematologica 2020;105(8): 1996–8.
16. Akbari S, Rasouli-Ghahroudi AA. Vitamin K and bone metabolism: a review of the latest evidence in preclinical studies. BioMed Rese Int 2018;2018:1–8.
17. Liu S, Li S, Shen G, Sukumar N, Krezel AM, Li W. Structural basis of antagonizing the vitamin K catalytic cycle for anticoagulation. Science 2021;371(6524):eabc5667.
18. Jones DA, Wright P, Alizadeh MA, Fhadil S, Rathod KS, Guttmann O, et al. The use of novel oral anti-coagulant’s (NOAC) compared to vitamin K antagonists (Warfarin) in patients with left ventricular thrombus after acute myocardial infarction (AMI). Eur Heart J Cardiovasc Pharmacother 2020; pvaa096; doi:10.1093/ehjcvp/pvaa096
19. Akbulut AC, Pavlic A, Petsophonsakul P, Halder M, Maresz K, Kramann R, et al. Vitamin K2 needs an RDI separate from vitamin K1. Nutrients 2020;12(6):1852.
20. Braasch-Turi M, Crans DC. Synthesis of naphthoquinone derivatives: menaquinones, lipoquinones and other vitamin K derivatives. Molecules 2020;25(19):4477.
21. Song J, Liu H, Wang L, Dai J, Liu Y, Liu H, et al. Enhanced production of vitamin K2 from Bacillus subtilis (natto) by mutation and optimization of the fermentation medium. Braz Arch Biol Technol 2014;57(4):606–12.
22. Wu WJ, Ahn BY. Statistical optimization of medium components by response surface methodology to enhance menaquinone-7 (vitamin K2) production by Bacillus subtilis. J Microbiol Biotechnol 2018;28(6):902–8.
23. Ren L, Peng C, Hu X, Han Y, Huang H. Microbial production of vitamin K2: current status and future prospects. Biotechnol Adv 2020;39:107453.
24. Bøe CA, Holo H. Engineering Lactococcus lactis for increased vitamin K2 production. Front Bioeng Biotechnol 2020;8:191.
25. Kamao M, Suhara Y, Tsugawa N, Uwano M, Yamaguchi N, Uenishi K, et al. Vitamin K content of foods and dietary vitamin K intake in Japanese young women. J Nutr Sci Vitaminol 2007;53(6):464–70.
26. Walther B, Karl JP, Booth SL, Boyaval P. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 2013;4(4):463–73.
27. Geleijnse JM, Vermeer C, Grobbee DE, Schurgers LJ, Knapen MHJ, van der Meer IM, et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the rotterdam study. J Nutr 2004;134(11):3100–5.
28. McCann JC, Ames BN. Vitamin K, an example of triage theory: is micronutrient inadequacy linked to diseases of aging? Am J Clin Nutr 2009;90(4):889–907.
29. Tutusaus A, Marí M, Ortiz-Pérez JT, Nicolaes GAF, Morales A, García de Frutos P. Role of vitamin K-dependent factors protein S and GAS6 and TAM receptors in SARS-CoV-2 infection and COVID-19-associated immunothrombosis. Cells 2020;9(10):2186.
30. Jagannath VA, Thaker V, Chang AB, Price AI. Vitamin K supplementation for cystic fibrosis. Cochrane Database Syst Rev [Internet] 2020; doi:10.1002/14651858.CD008482.pub6 (Accessed 17 May 2021).
31. Katayama T, Yokoyama N, Hirofumi H, Kataoka A, Watanabe Y, Kozuma K. Blood coagulation status after transcatheter aortic valve implantation between the patients with vitamin K antagonist and direct oral anticoagulants. Eur Heart J 2020;41(Supplement_2):ehaa946.1992.
32. Al-Suhaimi EA, Al-Jafary MA. Endocrine roles of vitamin K-dependent- osteocalcin in the relation between bone metabolism and metabolic disorders. Rev Endocr Metab Disord 2020;21(1): 117–25
1. Dam H. Cholesterinstoffwechsel in Huhnereien und Huhnchen. Biochem Zeitschr 1929;215:475–92.
2. Tsugawa N, Shiraki M. Vitamin K nutrition and bone health. Nutrients 2020;12(7):1909.
3. Oxholm Gordeladze J. Vitamin K2: a vitamin that works like a hormone, impinging on gene expression. In: Ray S (ed.). Cell Signalling—Thermodynamics and Molecular Control [Internet], IntechOpen, 2019. Available via https://www.intechopen.com/books/cell-signalling-thermodynamics-and-molecular-control/vitamin-k2-a-vitamin-that-works-like-a-hormone-impinging-on-gene-expression (Accessed 15 May 2021).
4. Xv F, Chen J, Duan L, Li S. Research progress on the anticancer effects of vitamin K2 (Review). Oncol Lett [Internet] 2018. Available via http://www.spandidos-publications.com/10.3892/ol.2018.8502 (Accessed 15 May 2021).
5. Schwalfenberg GK. Vitamins K1 and K2: the emerging group of vitamins required for human health. J Nutr Metab 2017;2017:1–6.6. Berenjian A, Mahanama R, Kavanagh J, Dehghani F. Vitamin K series: current status and future prospects. Crit Rev Biotechnol 2015;35(2):199–208.
7. Kojima A, Ikehara S, Kamiya K, Kajita E, Sato Y, Kouda K, et al. Natto intake is inversely associated with osteoporotic fracture risk in postmenopausal Japanese Women. J Nutr 2020;150(3):599–605.
8. DiNicolantonio JJ, Bhutani J, O’Keefe JH. The health benefits of vitamin K. Open Heart 2015;2(1):e000300.
9. w Walther B, Chollet M. Menaquinones, bacteria, and foods: vitamin K2 in the diet. In: Gordeladze JO (ed.). Vitamin K2—Vital for Health and Wellbeing [Internet], InTech, 2017. Available via http://www.intechopen.com/books/vitamin-k2-vital-for-health-and-wellbeing/menaquinones-bacteria-and-foods-vitamin-k2-in-the-diet (Accessed 15 May 2021).
10. Shearer MJ, Newman P. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis. J Lipid Res 2014;55(3):345–62.
11. Halder M, Petsophonsakul P, Akbulut A, Pavlic A, Bohan F, Anderson E, et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. IJMS 2019;20(4):896.
12. Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, et al. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice. J Biol Chem 2008;283(17):11270–9.
13. Hirota Y, Tsugawa N, Nakagawa K, Suhara Y, Tanaka K, Uchino Y, et al. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J Biol Chem 2013;288(46):33071–80.
14. Simes DC, Viegas CSB, Araújo N, Marreiros C. Vitamin K as a diet supplement with impact in human health: current evidence in age-related diseases. Nutrients 2020;12(1):138.
15. Ayombil F, Camire RM. Insights into vitamin K-dependent carboxylation: home field advantage. Haematologica 2020;105(8): 1996–8.
16. Akbari S, Rasouli-Ghahroudi AA. Vitamin K and bone metabolism: a review of the latest evidence in preclinical studies. BioMed Rese Int 2018;2018:1–8.
17. Liu S, Li S, Shen G, Sukumar N, Krezel AM, Li W. Structural basis of antagonizing the vitamin K catalytic cycle for anticoagulation. Science 2021;371(6524):eabc5667.
18. Jones DA, Wright P, Alizadeh MA, Fhadil S, Rathod KS, Guttmann O, et al. The use of novel oral anti-coagulant’s (NOAC) compared to vitamin K antagonists (Warfarin) in patients with left ventricular thrombus after acute myocardial infarction (AMI). Eur Heart J Cardiovasc Pharmacother 2020; pvaa096; doi:10.1093/ehjcvp/pvaa096
19. Akbulut AC, Pavlic A, Petsophonsakul P, Halder M, Maresz K, Kramann R, et al. Vitamin K2 needs an RDI separate from vitamin K1. Nutrients 2020;12(6):1852.
20. Braasch-Turi M, Crans DC. Synthesis of naphthoquinone derivatives: menaquinones, lipoquinones and other vitamin K derivatives. Molecules 2020;25(19):4477.
21. Song J, Liu H, Wang L, Dai J, Liu Y, Liu H, et al. Enhanced production of vitamin K2 from Bacillus subtilis (natto) by mutation and optimization of the fermentation medium. Braz Arch Biol Technol 2014;57(4):606–12.
22. Wu WJ, Ahn BY. Statistical optimization of medium components by response surface methodology to enhance menaquinone-7 (vitamin K2) production by Bacillus subtilis. J Microbiol Biotechnol 2018;28(6):902–8.
23. Ren L, Peng C, Hu X, Han Y, Huang H. Microbial production of vitamin K2: current status and future prospects. Biotechnol Adv 2020;39:107453.
24. Bøe CA, Holo H. Engineering Lactococcus lactis for increased vitamin K2 production. Front Bioeng Biotechnol 2020;8:191.
25. Kamao M, Suhara Y, Tsugawa N, Uwano M, Yamaguchi N, Uenishi K, et al. Vitamin K content of foods and dietary vitamin K intake in Japanese young women. J Nutr Sci Vitaminol 2007;53(6):464–70.
26. Walther B, Karl JP, Booth SL, Boyaval P. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 2013;4(4):463–73.
27. Geleijnse JM, Vermeer C, Grobbee DE, Schurgers LJ, Knapen MHJ, van der Meer IM, et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the rotterdam study. J Nutr 2004;134(11):3100–5.
28. McCann JC, Ames BN. Vitamin K, an example of triage theory: is micronutrient inadequacy linked to diseases of aging? Am J Clin Nutr 2009;90(4):889–907.
29. Tutusaus A, Marí M, Ortiz-Pérez JT, Nicolaes GAF, Morales A, García de Frutos P. Role of vitamin K-dependent factors protein S and GAS6 and TAM receptors in SARS-CoV-2 infection and COVID-19-associated immunothrombosis. Cells 2020;9(10):2186.
30. Jagannath VA, Thaker V, Chang AB, Price AI. Vitamin K supplementation for cystic fibrosis. Cochrane Database Syst Rev [Internet] 2020; doi:10.1002/14651858.CD008482.pub6 (Accessed 17 May 2021).
31. Katayama T, Yokoyama N, Hirofumi H, Kataoka A, Watanabe Y, Kozuma K. Blood coagulation status after transcatheter aortic valve implantation between the patients with vitamin K antagonist and direct oral anticoagulants. Eur Heart J 2020;41(Supplement_2):ehaa946.1992.
32. Al-Suhaimi EA, Al-Jafary MA. Endocrine roles of vitamin K-dependent- osteocalcin in the relation between bone metabolism and metabolic disorders. Rev Endocr Metab Disord 2020;21(1): 117–25
1. Dam H. Cholesterinstoffwechsel in Huhnereien und Huhnchen. Biochem Zeitschr 1929;215:475–92.
2. Tsugawa N, Shiraki M. Vitamin K nutrition and bone health. Nutrients 2020;12(7):1909.
3. Oxholm Gordeladze J. Vitamin K2: a vitamin that works like a hormone, impinging on gene expression. In: Ray S (ed.). Cell Signalling—Thermodynamics and Molecular Control [Internet], IntechOpen, 2019. Available via https://www.intechopen.com/books/ cell-signalling-thermodynamics-and-molecular-control/vitamin-k2- a-vitamin-that-works-like-a-hormone-impinging-on-gene-expression (Accessed 15 May 2021).
4. Xv F, Chen J, Duan L, Li S. Research progress on the anticancer effects of vitamin K2 (Review). Oncol Lett [Internet] 2018. Available via http:// www.spandidos-publications.com/10.3892/ol.2018.8502 (Accessed 15 May 2021).
5. Schwalfenberg GK. Vitamins K1 and K2: the emerging group of vitamins required for human health. J Nutr Metab 2017;2017:1–6.
6. Berenjian A, Mahanama R, Kavanagh J, Dehghani F. Vitamin K series: current status and future prospects. Crit Rev Biotechnol 2015;35(2):199–208.
7. Kojima A, Ikehara S, Kamiya K, Kajita E, Sato Y, Kouda K, et al. Natto intake is inversely associated with osteoporotic fracture risk in postmenopausal Japanese Women. J Nutr 2020;150(3):599–605.
8. DiNicolantonio JJ, Bhutani J, O’Keefe JH. The health benefits of vitamin K. Open Heart 2015;2(1):e000300.
9. w Walther B, Chollet M. Menaquinones, bacteria, and foods: vitamin K2 in the diet. In: Gordeladze JO (ed.). Vitamin K2—Vital for Health and Wellbeing [Internet], InTech, 2017. Available via http://www. intechopen.com/books/vitamin-k2-vital-for-health-and-wellbeing/ menaquinones-bacteria-and-foods-vitamin-k2-in-the-diet (Accessed 15 May 2021).
10. Shearer MJ, Newman P. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis. J Lipid Res 2014;55(3):345–62.
11. Halder M, Petsophonsakul P, Akbulut A, Pavlic A, Bohan F, Anderson E, et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. IJMS 2019;20(4):896.
12. Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, et al. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice. J Biol Chem 2008;283(17):11270–9.
13. Hirota Y, Tsugawa N, Nakagawa K, Suhara Y, Tanaka K, Uchino Y, et al. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J Biol Chem 2013;288(46):33071–80.
14. Simes DC, Viegas CSB, Araújo N, Marreiros C. Vitamin K as a diet supplement with impact in human health: current evidence in agerelated diseases. Nutrients 2020;12(1):138.
15. Ayombil F, Camire RM. Insights into vitamin K-dependent carboxylation: home field advantage. Haematologica 2020;105(8): 1996–8.
16. Akbari S, Rasouli-Ghahroudi AA. Vitamin K and bone metabolism: a review of the latest evidence in preclinical studies. BioMed Rese Int 2018;2018:1–8.
17. Liu S, Li S, Shen G, Sukumar N, Krezel AM, Li W. Structural basis of antagonizing the vitamin K catalytic cycle for anticoagulation. Science 2021;371(6524):eabc5667.
18. Jones DA, Wright P, Alizadeh MA, Fhadil S, Rathod KS, Guttmann O, et al. The use of novel oral anti-coagulant’s (NOAC) compared to vitamin K antagonists (Warfarin) in patients with left ventricular thrombus after acute myocardial infarction (AMI). Eur Heart J Cardiovasc Pharmacother 2020; pvaa096; doi:10.1093/ehjcvp/pvaa096
19. Akbulut AC, Pavlic A, Petsophonsakul P, Halder M, Maresz K, Kramann R, et al. Vitamin K2 needs an RDI separate from vitamin K1. Nutrients 2020;12(6):1852.
20. Braasch-Turi M, Crans DC. Synthesis of naphthoquinone derivatives: menaquinones, lipoquinones and other vitamin K derivatives. Molecules 2020;25(19):4477.
21. Song J, Liu H, Wang L, Dai J, Liu Y, Liu H, et al. Enhanced production of vitamin K2 from Bacillus subtilis (natto) by mutation and optimization of the fermentation medium. Braz Arch Biol Technol 2014;57(4):606–12.
22. Wu WJ, Ahn BY. Statistical optimization of medium components by response surface methodology to enhance menaquinone-7 (vitamin K2) production by Bacillus subtilis. J Microbiol Biotechnol 2018;28(6):902–8.
23. Ren L, Peng C, Hu X, Han Y, Huang H. Microbial production of vitamin K2: current status and future prospects. Biotechnol Adv 2020;39:107453.
24. Bøe CA, Holo H. Engineering Lactococcus lactis for increased vitamin K2 production. Front Bioeng Biotechnol 2020;8:191.
25. Kamao M, Suhara Y, Tsugawa N, Uwano M, Yamaguchi N, Uenishi K, et al. Vitamin K content of foods and dietary vitamin K intake in Japanese young women. J Nutr Sci Vitaminol 2007;53(6):464–70.
26. Walther B, Karl JP, Booth SL, Boyaval P. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 2013;4(4):463–73.
27. Geleijnse JM, Vermeer C, Grobbee DE, Schurgers LJ, Knapen MHJ, van der Meer IM, et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the rotterdam study. J Nutr 2004;134(11):3100–5.
28. McCann JC, Ames BN. Vitamin K, an example of triage theory: is micronutrient inadequacy linked to diseases of aging? Am J Clin Nutr 2009;90(4):889–907.
29. Tutusaus A, Marí M, Ortiz-Pérez JT, Nicolaes GAF, Morales A, García de Frutos P. Role of vitamin K-dependent factors protein S and GAS6 and TAM receptors in SARS-CoV-2 infection and COVID-19- associated immunothrombosis. Cells 2020;9(10):2186.
30. Jagannath VA, Thaker V, Chang AB, Price AI. Vitamin K supplementation for cystic fibrosis. Cochrane Database Syst Rev [Internet] 2020; doi:10.1002/14651858.CD008482.pub6 (Accessed 17 May 2021).
31. Katayama T, Yokoyama N, Hirofumi H, Kataoka A, Watanabe Y, Kozuma K. Blood coagulation status after transcatheter aortic valve implantation between the patients with vitamin K antagonist and direct oral anticoagulants. Eur Heart J 2020;41(Supplement_2):ehaa946.1992.
32. Al-Suhaimi EA, Al-Jafary MA. Endocrine roles of vitamin K-dependent- osteocalcin in the relation between bone metabolism and metabolic disorders. Rev Endocr Metab Disord 2020;21(1): 117–25.
33. Shetty S, Kapoor N, Bondu JD, Thomas N, Paul TV. Bone turnover markers: emerging tool in the management of osteoporosis. Indian J Endocrinol Metab 2016;20(6):846.
34. Vermeer C, Theuwissen E. Vitamin K, osteoporosis and degenerative diseases of ageing. Menopause Int 2011;17(1):19–23.
35. Knapen MHJ, Drummen NE, Smit E, Vermeer C, Theuwissen E. Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporos Int 2013;24(9):2499–507.
36. Singh S. Serum osteocalcin as a diagnostic biomarker for primary osteoporosis in women. JCDR [Internet] 2015. Available via http:// jcdr.net/article_fulltext.asp?issn=0973-709x&year=2015&volume= 9&issue=8&page=RC04&issn=0973-709x&id=6318 (Accessed 18 May 2021).
37. Azuma K, Inoue S. Multiple modes of vitamin K actions in agingrelated musculoskeletal disorders. Int J Mol Sci 2019;20(11):2844.
38. Bolton-Smith C, McMurdo ME, Paterson CR, Mole PA, Harvey JM, Fenton ST, et al. Two-year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J Bone Miner Res 2007;22(4):509–19.
39. Cockayne S, Adamson J, Lanham-New SL, Shearer MJ, Gilbody S, Torgerson DJ. Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 2006;166(12):1256–61; doi:10.1001/archinte.166.12.1256
40. Ishida Y. Vitamin K2. Clin Calcium 2008;18(10):1476–82.
41. Pearson K. Vitamin K1 vs. K2: what’s the difference? [Internet]. Healthline 2017. Available via https://www.healthline.com/nutrition/ vitamin-k1-vs-k2 (Accessed 18 May 2021).
42. van Ballegooijen AJ, Pilz S, Tomaschitz A, Grübler MR, Verheyen N. The synergistic interplay between vitamins D and K for bone and cardiovascular health: a narrative review. Int J Endocrinol 2017;2017:1–12.
43. Beulens JWJ, Bots ML, Atsma F, Bartelink MLEL, Prokop M, Geleijnse JM, et al. High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis 2009;203(2):489–93.
44. Theuwissen E, Smit E, Vermeer C. The role of vitamin K in soft-tissue calcification. Adv Nutr 2012;3(2):166–73.
45. Raggi P, Boulay A, Chasan-Taber S, Amin N, Dillon M, Burke SK, et al. Cardiac calcification in adult hemodialysis patients. J Am Coll Cardiol 2002;39(4):7.
46. Schurgers LJ, Spronk HMH, Skepper JN, Hackeng TM, Shanahan CM, Vermeer C, et al. Post-translational modifications regulate matrix Gla protein function: importance for inhibition of vascular smooth muscle cell calcification. J Thromb Haemost 2007;5(12):2503–11.
47. Schurgers LJ, Cranenburg ECM, Vermeer C. Matrix Gla-protein: the calcification inhibitor in need of vitamin K. Thromb Haemost 2008;100(4):593–603.
48. Lindholt JS, Frandsen NE, Fredgart MH, Øvrehus KA, Dahl JS, Møller JE, et al. Effects of menaquinone-7 supplementation in patients with aortic valve calcification: study protocol for a randomised controlled trial. BMJ Open 2018;8:e022019; doi:10.1136/bmjopen-2018-022019
49. Shioi A, Morioka T, Shoji T, Emoto M. The inhibitory roles of vitamin K in progression of vascular calcification. Nutrients [Internet] 2020;12(2). Available via https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC7071387/ (Accessed 18 May 2021).
50. Vermeer CV. Vitamin K: the effect on health beyond coagulation – an overview. Food Nutr Res 2012;56(1):5329.
51. Cozzolino M, Cianciolo G, Podestà MA, Ciceri P, Galassi A, Gasperoni L, et al. Current therapy in CKD patients can affect vitamin K status. Nutrients 2020;12(6):1609.
52. Ho HJ, Komai M, Shirakawa H. Beneficial effects of vitamin K status on glycemic regulation and diabetes mellitus: a mini-review. Nutrients 2020;12(8):1–16.
53. Li Y, Chen JP, Duan L, Li S. Effect of vitamin K2 on type 2 diabetes mellitus: a review. Diabetes Res Clin Pract 2018;136:39–51.
54. Choi HJ, Yu J, Choi H, An JH, Kim SW, Park KS, et al. Vitamin K2 supplementation improves insulin sensitivity via osteocalcin metabolism: a placebo-controlled trial. Diabetes Care 2011;34(9):e147.
55. Hussein AG, Mohamed RH, Shalaby SM, Abd El Motteleb DM. Vitamin K2 alleviates type 2 diabetes in rats by induction of osteocalcin gene expression. Nutrition 2018;47:33–8.
56. Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A 2008;105(13):5266–70.
57. Bourron O, Phan F. Vitamin K: a nutrient which plays a littleknown role in glucose metabolism. Curr Opin Clin Nutr Metab Care 2019;22(2):174–81.
58. Ichikawa T, Horie-Inoue K, Ikeda K, Blumberg B, Inoue S. Vitamin K2 induces phosphorylation of protein kinase A and expression of novel target genes in osteoblastic cells. J Mol Endocrinol 2007;39(4): 239–47.
59. Ito A, Shirakawa H, Takumi N, Minegishi Y, Ohashi A, Howlader ZH, et al. Menaquinone-4 enhances testosterone production in rats and testis-derived tumor cells. Lipids Health Dis 2011;10(1):158.
60. NTVitamin K2 boosts testosterone—JornTrommelen.com [Internet]. 2011. Available via https://www.nutritiontactics.com/vitamin-k2- boosts-testosterone/ (Accessed 17 May 2021).
61. Sanyaolu AO, Oremosu AA, Osinubi AA, Vermeer C, Daramola AO. Warfarin-induced vitamin K deficiency affects spermatogenesis in Sprague-Dawley rats. Andrologia 2019;51(10):13416.
62. Shiba S, Ikeda K, Horie-Inoue K, Azuma K, Hasegawa T, Amizuka N, et al. Vitamin K-dependent γ-glutamyl carboxylase in Sertoli cells is essential for male fertility in mice. Mol Cell Biol 2021;41(4).
63. Popa DS, Bigman G, Rusu ME. the role of vitamin K in humans: implication in aging and age-associated diseases. Antioxidants 2021;10(4):566.
64. Kakizaki S, Sohara N, Sato K, Suzuki H, Yanagisawa M, Nakajima H, et al. Preventive effects of vitamin K on recurrent disease in patients with hepatocellular carcinoma arising from hepatitis C viral infection. J Gastroenterol Hepatol 2007;22(4):518–22.
65. Beaudin S, Kokabee L, Welsh J. Divergent effects of vitamins K1 and K2 on triple negative breast cancer cells. Oncotarget 2019;10(23):2292–305; doi:10.18632/oncotarget.26765
66. Ivanova D, Zhelev Z, Getsov P, Nikolova B, Aoki I, Higashi T, et al. Vitamin K: redox-modulation, prevention of mitochondrial dysfunction and anticancer effect. Redox Biol 2018;16:352–8.
67. Dahlberg S, Ede J, Schött U. Vitamin K and cancer. Scand J Clin Lab Invest 2017;77(8):555–67.
68. Verrax J, Taper H, Buc Calderon P. Targeting cancer cells by an oxidant-based therapy. Curr Mol Pharmacol 2008;1(1):80–92.
69. Yokoyama T, Miyazawa K, Naito M, Toyotake J, Tauchi T, Itoh M, et al. Vitamin K2 induces autophagy and apoptosis simultaneously in leukemia cells. Autophagy 2008;4(5):629–40.
70. Duan F, Mei C, Yang L, Zheng J, Lu H, Xia Y, et al. Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells. Sci Rep 2020;10(1):7714.
71. Ferland G. Vitamin K and the nervous system: an overview of its actions. Adv Nutr 2012;3(2):204–12.
72. Shearer MJ, Fu X, Booth SL. Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv Nutr 2012;3(2):182–95.
73. Gancheva SM, Zhelyazkova-Savova MD. Vitamin K2 improves anxiety and depression but not cognition in rats with metabolic syndrome: a role of blood glucose? Folia Med (Plovdiv) 2016;58(4):264–72.
74. Huang SH, Fang ST, Chen YC. Molecular mechanism of vitamin K2 protection against amyloid-β-induced cytotoxicity. Biomolecules 2021;11(3):423.
75. Yu YX, Yu XD, Cheng QZ, Tang L, Shen MQ. The association of serum vitamin K2 levels with Parkinson’s disease: from basic case-control study to big data mining analysis. Aging (Albany NY) 2020;12(16):16410–9.
76. Lin X, Wen X, Wei Z, Guo K, Shi F, Huang T, et al. Vitamin K2 protects against Aβ42-induced neurotoxicity by activating autophagy and improving mitochondrial function in Drosophila. Neuroreport 2021;32(6):431–7.
77. Tanprasertsuk J, Ferland G, Johnson MA, Poon LW, Scott TM, Barbey AK, et al. Concentrations of circulating phylloquinone, but not cerebral menaquinone-4, are positively correlated with a wide range of cognitive measures: exploratory findings in centenarians. J Nutr 2020;150(1):82–90.
78. Tamadon-Nejad S, Ouliass B, Rochford J, Ferland G. Vitamin K deficiency induced by warfarin is associated with cognitive and behavioral perturbations, and alterations in brain sphingolipids in rats. Front Aging Neurosci [Internet] 2018;10. Available via https://www.frontiersin.org/articles/10.3389/fnagi.2018.00213/full (Accessed 2 June 2021).
79. Shen T, Bimali M, Faramawi M, Orloff MS. Consumption of vitamin K and vitamin A are associated with reduced risk of developing emphysema: NHANES 2007–2016. Front Nutr [Internet] 2020;7. Available via https://www.frontiersin.org/articles/10.3389/ fnut.2020.00047/full (Accessed 2 June 2021).
80. Linneberg A, Kampmann FB, Israelsen SB, Andersen LR, Jørgensen HL, Sandholt H, et al. Low vitamin K status predicts mortality in a cohort of 138 hospitalized patients with COVID-19. medRxiv [Internet].. Available via https://www.medrxiv.org/ content/10.1101/2020.12.21.20248613v1 (Accessed 2 June 2021).
81. Janssen R, Visser MPJ, Dofferhoff ASM, Vermeer C, Janssens W, Walk J. Vitamin K metabolism as the potential missing link between lung damage and thromboembolism in Coronavirus disease 2019. Br J Nutr 2020;1–8.
82. Dofferhoff ASM, Piscaer I, Schurgers LJ, Visser MPJ, van den Ouweland JMW, de Jong PA, et al. Reduced vitamin K status as a potentially modifiable risk factor of severe coronavirus disease 2019. Clin Infect Dis 2020;ciaa1258.
83. Goddek S. Vitamin D3 and K2 and their potential contribution to reducing the COVID-19 mortality rate. Int J Infect Dis 2020;99:286–90.
84. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol 2020;17(9):543–58.
85. WHO. Global atlas on cardiovascular disease prevention and control [Internet]. WHO, Geneva, Switzerland. Available via http://www.who. int/cardiovascular_diseases/publications/atlas_cvd/en/ (Accessed 20 May 2021).
86. Global vitamin K market size analysis and industry opportunity–— Bekryl market analysts [Internet]. Available via https://bekryl. com/industry-trends/vitamin-k-market-size-analysis (Accessed 20 May 2021).
87. Pucaj K, Rasmussen H, Møller M, Preston T. Safety and toxicological evaluation of a synthetic vitamin K2, menaquinone-7. Toxicol Mech Methods 2011;21(7):520–32.
88. Quinlan PTURV. Vitamin K2 containing food product [Internet]. EP1153548A1, 2001. Available via https://patents.google.com/patent/ EP1153548A1/en (Accessed 22 May 2021).
89. Inc GMI. Vitamin K Market value to hit $1 billion by 2025: Global Market Insights, Inc. [Internet]. GlobeNewswire News Room. 2019. Available via https://www.globenewswire.com/en/news-release/2019/08/13/1900907/0/ en/Vitamin-K-Market-value-to-hit-1-billion-by-2025-Global-MarketInsights-Inc.html (Accessed 20 May 2021).
90. Vitamin K market size, share, growth, trend, demand, top players, opportunities and forecast to 2025—MarketWatch [Internet]. Available via https://www.marketwatch.com/press-release/vitamink-market-size-share-growth-trend-demand-top-players-opportunitiesand-forecast-to-2025-2021-05-19?tesla=y (Accessed 20 May 2021).
91. Vitamin K2 Market 2019: deep analysis of current trends and future demand by top key players are DSM, Kyowa Hakko, GeneFerm Biotechnology Co., Ltd., Frutarom, Kappa Bioscience AS. Medgadget [Internet]. Available via https://www.medgadget.com/2019/09/ vitamin-k2-market-2019-deep-analysis-of-current-trends-and-futuredemand-by-top-key-players-are-dsm-kyowa-hakko-genefermbiotechnology-co-ltd-frutarom-kappa-bioscience-as.html (Accessed 19 May 2021).